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Transverse-longitudinal part of the vector potential in classical 
electrodynamics 

V M Dubovik and S V Shabanov 
Laboratory o f  Theoretical Phbsics, Joint Institute for Nuclear Research, PO BOX 79, 
Moscow, USSR 

Received 8 Februar) 1 9 Y O  

Abstract. Existence of a phqsical (gauge-inbariant)  degree of freedom of the vector potential 
generating no electromagnetic fields is proved in classical electrodynamics within the Dirac 
generalised Hamiltonian dynamics.  The gauge-invariant form o f  electrodynamics o f  
charged particles is given, within which the question of observing the obtained degree of 
freedom is discussed. I t  is shown that i t  causes an  electric current in a superconducting 
ring put on the solenoid.  

1. Introduction 

Some 60 years ago Fock (1927) and Weyl (1929) proposed the principle of gauge 
symmetry for describing the interaction of charged particles with an electromagnetic 
field. In  essence, all modern models of elementary particle physics are based on this 
principle (Yang and Mills 1954). 

The essential element of gauge theories is that the interaction of material fields 
with a gauge field is accomplished within its potentials defined ambiguously. At first 
glance, potentials in electrodynamics seem to be unnecessary since equations of motion 
are written in terms of electromagnetic fields being gauge invariant. (There is another 
situation in a non-Abelian case where fields are not gauge invariant, and potentials 
play a more fundamental role (Jackiw 1980). The ambiguity of electromagnetic poten- 
tials in quantum mechanics of a charged particle gave rise to an extensive discussion 
in the literature (Ehrenberg and Siday 1949, Aharonov and Bohm 1959). The essence 
of the physical problem is to answer the question: what influences a charged particle 
near the region occupied by the magnetic field (for example, near a solenoid)? If the 
answer is that a particle interacts with a vector potential, then one may object: a 
potential is defined with an accuracy of the gradient of an arbitrary function. Hence 
it cannot play the role of a physical field which influences only a charged particle. 
There exists an interpretation of this phenomenon in the framework of the non- 
integrable phase factor (Wu and Yang 1975a, b )  (see also Sheikh 1984). 

In the present work, we try to look at this problem in the spirit of the quantum 
theory of gauge fields. I t  is well known that a gauge gives the first-class constraints 
(Dirac 1964). In quantum theory the observed are the values commuting with all 
constraints (Dirac 1964), i.e. these values are gauge invariant. Based on the Dirac 
formalism used for quantisation of gauge theories, we determine physical degrees of 
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freedom in the 'electromagnetic field and charged particles' system and give their 
physical interpretation (section 2 ) .  Then, we show there exists a gauge-invariant field 
distributed around regions occupied by a magnetic field with which a quantum charged 
particle interacts as locally as with a vector potential (section 3). In section 4 we 
suggest the examples of the influence of the gauge-invariant field found on a quantum 
charged particle, i.e. in essence, we interpret the effects of such as the Aharonov-Bohm 
effect as a result of the interaction of a charged particle with this field. In particular, 
the latter induces an electric current in a superconductor. 

2. Physical degrees of freedom in electrodynamics 

A vector potential A ,  in classical electrodynamics is known to be defined with the 
accuracy of a gradient of an arbitrary function. Thus, one of four functions A ,  can 
be removed by a gauge transformation. Nevertheless, an electromagnetic field has 
only two physical degrees of freedom (two transversal polarisations of a photon). The 
essence of this paradox has been known for a long time (Dirac 1964, 1967). An 
electromagnetic field as a dynamical system is a constrained system (Dirac 1964) and, 
although the gauge arbitrariness contains only one function, it generates two indepen- 
dent constraints for degrees of freedom in electrodynamics. A physical quantity in a 
gauge theory must not depend on the choice of a gauge (i.e. on an evolution of 
unphysical variables), so it must be gauge invariant. The latter is equivalent to saying 
that its Poisson brackets with the first-class constraints are equal to zero (Dirac 1964, 
1967). 

We use this to give a physical interpretation of the vector potential components in 
the 'electromagnetic field and charged particles' system in a classical theory as well 
as in a quantum one. The Lagrangian has the form ( h  = c = 1 here and below) 

L = d' x $(E' ,  - B:)  + 1 m i 2  + e (  r, A (  r ) )  - eA,( r )  (2.1) 

where E,  = -A, -a,A, is an electric field ( n  = 1,2,3),  B, are components of a magnetic 
field B = rot A,  r is a position vector of a charged particle, m is its mass, and A,, A,  
are vector and scalar potentials, respectively. In the case of several particles one should 
replace r, m, e by r,, mar e, and introduce a sum over a. We define canonical momenta 
as follows: p = a L / a i  = r + eA( r )  and 7~~ = a L/ 6 A ,  where no = 0, n!, = -E,. So the 
Hamiltonian is 

I 

The Poisson brackets are defined in the standard way: 

Since 7~~ = 0, for the self-consistency of a dynamics one has to require 7jo = 0 at all 
time moments, i.e. 

G = { T ~ ) ,  H } = a,€, ( x ) - e6 (x - r ) . (2.4) 
It is easy to check that {G, H }  = 0; hence (2.4) gives all secondary constraints (Dirac 
1964). 
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It follows from (2.4) that the longitudinal canonical momentum is not a dynamical 
variable but is determined by a distribution of charges in a system. Therefore, introduc- 
ing new canonical variables 

where ana, = a n r n  = 0 and  A - '  is an  operator inverse to the Laplace operator A = a n d ,  
in the whole space R', we can formulate the theory in terms of gauge-invariant physical 
variables a ,  and E ,  since G = r E ( x )  - e6(x  - r ) ,  { E , , ,  G} = {a,,, G} = 0. It is well known 
that the physical degrees of freedom in electrodynamics are transversal components 
of a vector potential (Dirac 1967). The longitudinal part corresponds to the Coulomb 
field. Indeed, reform 5 d'x E :  = 5 d'x(~:, - T ~ A - ' ~ ~ ) .  Now we see that the second term 
turns into the energy of the Coulomb interaction of charges e, after a substitution 
T€  = E, e J ( x  - r , )  and it also contains its own infinite Coulomb energies of the charges 
(the consequence of the pointlikeness of particles). Note, { G, p n }  # 0; thus, the momen- 
tum of a particle is not gauge invariant. However, we can easily remove this trouble 
by passing to the new canonical momentum pk = p n  + e d , t ( r ) .  One can check that 
{ r , l ,  p i }  = a,,,,, and { G, p ; }  = 0. Hence, pk should be identified with the physical 
observed momentum of a charged particle. 

As a result, we get the physical Hamiltonian of the system after solving all constraints 

where we have omitted the infinite Coulomb energies of charges. One can be convinced 
that the Hamiltonian equations of motion ti = {a, H p h } ,  d = { E ,  H p h }  and r, = { r u ,  H p h } ,  

pb = { P I ,  Hph} coincide with the standard equations of motion for the 'electromagnetic 
field and  charged particles' system. 

Let us turn now to quantum theory to elucidate the role of a longitudinal part of 
a vector potential in it. This question, of course, was discussed many times in the 
framework of a field theory (Dirac 1964, 1967, Prokhorov 1988). Nevertheless, we 
shall try to make our  consideration more clear as applied to quantum mechanics of 
charged particles. The quantisation of the present system is made by changing canonical 
variables by the operators and  { ,} + - i [  ,] ([ ,] is a commutator). Then 

and  the operators (2.4) and rTT0 pick out a physical (gauge-invariant) Hilbert subspace 
x p h  of states (Dirac 1964), i.e. 

"Ol@ph) = Glop,,) = 0. (2.8) 
To solve (2.8) we use the coordinate representation in which ~ " ( x )  = -iS/SA,,(x), p z  = 
-i alar: and  the states QPh are functions of r a  and functionals of A,,.  This representation 
is called the functional representation in quantum field theory (Shweber 1961). The 
states 

QPh[A,,, r ' ]  = F [ a ,  r ' ]  exp(i e,A-'a,A,,(r'')) (2.9) 
\ a 1 

satisfy (2.8) and present a general solution of them where a is defined in (2.5) and F 
is an  arbitrary functional of a and a function of r ' .  
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Thereby the longitudinal part of the vector potential determines a phase of a 
wavefunction of charged particles. We show now that this phase describes the Coulomb 
field of a quantum charged particle. Let us consider, for example, two quantum charges. 
The wavefunction 

( r , ,  r2, Avll ,  2)ph=exp[i elA-’J,A,,(rl)+i e 2 A ~ ’ a n A f l ( r 2 ) I ~ ( r l ,  r z )  (2.10) 

corresponds to them in accordance with (2.9) where 141‘ defines the density function 
of charges in their configurational space. Now we calculate the electric-field energy 
for the state (2.10): 

8,, = (1,214 d3x E $ l ,  2) J (2.11) 

where E ,  = -T,, is an operator of an  electric field. Using the explicit form of 7,  and 
(2.10) we find 

(2.12) 

Thus, gel is the Coulomb energy in a system of two quantum charges also including 
the Coulomb energy of every particle which is infinite ( a  = b in (2.12)). If  particles 
are localised at the points RI and R z ,  i.e. (1 ,2 )  = (l)i2) and ( l ( r , ( l )  = R I ,  (2(r212) = R2 then 

(2.13) 

and 8,, coincides with the energy of the Coulomb interaction of two classical charges. 
Thus, we are convinced that the quantum theory of a longitudinal component of 

a vector potential describes the Coulomb field of a charged particle. The wavefunctions 
(2.9) depend on A, non-locally, which exactly corresponds to the notion about a 
charged particle with the Coulomb field distributed around it (one can hardly imagine 
a charged particle without its Coulomb field!). However, we can easily get rid of this 
non-locality changing the potential in the quantum Hamiltonian. Indeed, since the 
dependence on 5 (see (2.5)) of physical states is known explicitly, the operator of the 
longitudinal part of the electric field can be calculated in %ph: 

where we have used the operators (2.5). Moreover, 

(pa - e a A ( r o ) ) ~ p ~ = ( ~ b - e a ~ ( r o ) ) @ p h  (2.15) 

where p f  =p:-e,d,[(r,). Equalities (2.14) and  (2.15) show that in RPh we can use 
the quantum Hamiltonian (2.6). Moreover, as it follows from (2.15) we can omit the 
dependence of the phase of aph on 5 assuming that p b  = -i alar, in the Hamiltonian 
(2.6). Thus we get the usual quantum theory of charged particles where we would like 
to emphasise charged particles interact locally with the field ( ~ ( x ) .  The remainder of 
the existence of the longitudinal degree of freedom 5 consists in the appearance of 
the Coulomb interaction between charged particles. 
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Thus, only two transversal components a,, of a vector potential A,  are physical, 
i.e. gauge invariant. The longitudinal part of A,, is not dynamical and  provides the 
Coulomb interaction of charges. It is the well known result in quantum field theory 
(Prokhorov 1982, 1988, Faddeev and Jackiw 1988). In  conclusion, we should like to 
make several remarks. The Hamiltonian formalism breaks an explicit Lorentz invari- 
ance. However, the initial Lagrangian has it; therefore, it is present implicitly in the 
Hamiltonian formalism (Schwinger 1962, 1963). Nevertheless, one can suggest an  
explicit Lorentz-invariant formulation of quantum theory for (2.1) using the quantisa- 
tion method by Fermi and Dirac with the condition J,A, = 0 (Dirac 1967) (about the 
self-consistency of this method see also Prokhorov (1988)). The conclusions are not 
changed in this case. The main point is that in the operator formulation, the condition 
d,A,@.,,=O should be supplemented by dod,A,@ph=O (Dirac 1967). So only two 
degrees of freedom, transversal photons, described by cy,, give again a contribution to 
the physical Hamiltonian of an electromagnetic field (Dirac 1967). 

Physical states picked out by the operators of constraints in the Dirac quantisation 
scheme are unnormalised in some sense. The simplest example is the first equation 
in (2.8). If @,,h does not depend on A, , ,  the integration of I@,,hl2 over A,] gives an 
infinite factor. But this problem is not the principal one in electrodynamics (Belinfante 
1949, Prokhorov 1988). In  the general case, we note that, first, the unnormalisability 
is due to integration over unphysical veriables, which does not influence the physics 
under any circumstances. Thus, we may ignore this infinite factor defining the scalar 
product in X p h .  Second, we may understand the normalisation of physical states in 
the full Hilbert space as normalisation of generalised functionals of states (for example, 
we normalise in this way plane waves, being eigenfunctions of the Hamiltonian for 
free particles) (Prokhorov 1988, Shabanov 1989). 

3. Quasiclassical approach for an electromagnetic field 

Now we consider the situation when we may neglect quantum properties of the 
electromagnetic field in the above system. In  this approach 

F [ a ,  r l  = exp(i S [ ( ~ l ) $ ~ ~ ( r )  (3.1) 
in (2.9) where, in accordance with the rules of quasiclassical description, S [ a ]  is the 
action of the electromagnetic field. In  this case, the electromagnetic field plays the 
role of an  external field for a quantum particle. Then it follows from (2.6) that 
the Schrodinger equation for charged particles has the form 

where V,,,, is the Coulomb energy interaction of particles with each other and with 
an  external charge, and  the electromagnetic energy in (2.6) is included in E. Here Gph 
is a gauge-invariant wavefunction of a system. Needless to say, (3.2) can also be 
derived from the standard equation: 

which is invariant under gauge transformations: 

(3.3) 
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if one introduces the gauge-invariant wavefunction 

%I,= exp( -i c eaA- 'a f lA , ( ra ) )+ .  (3.5) 
\ a  I 

Indeed, substituting (3.5) in (3.3) and taking into consideration the constraint a,E, = 
+,A, - AAo = p where p is the density of external charges, we get (3.2) if the external 
fields are stationary, and  also 

where the infinite Coulomb energy of charges is omitted. 
Equation (3.2) shows that a quantum charged particle interacts locally with the 

external field cy( r )  being a gauge-invariant physical degree of freedom in electro- 
dynamics, as has been demonstrated above. 

4. Free-field potentials in electrodynamics 

With the help of the gauge-invariant equation (3.2) we shall consider the situation 
when a charged particle moves near a region occupied by a magnetic field (Ehrenberg 
and  Siday 1949, Aharonov and  Bohm 1959). However, before turning to this question, 
we shall concentrate our attention on a more detailed determination of the invariant 
field a. 

Let external sources not depend on time. So, there exist only static electromagnetic 
fields in the system. We assume in addition p = 0 and hence E = 0. Using the static 
Maxwell equations we find an  expression for the vector potential A depending in 
general on a gauge. Then, the gauge-independent part of it is 

Let the field B f 0 in a region V. Since the magnetic field is solenoidal the region 
V* = R'\ V is multiconnected. We can write for A 

A ' ( x )  X E  V B = rot A' 
B = O  

A ( x )  = (4.2) 

and we assume also that B vanishes smoothly at the boundary a V, i.e. A ( x )  is a smooth 
vector function in R3. Clearly, this boundary condition relates to a great extent to 
choosing functions of external sources and  is not an  additional restriction. 

The substitution (4.2) in (4.1) shows that in the case V* = R'CY,,(VX) = 0, otherwise 
a ,  = a,,y"(x) at x = V* where V* c R3, 

(4.3) 

where v, is the external normal to the surface d V  and  d u ,  is an  element of dV. 
Therefore, the gauge-invariant field a ,  is not equal to zero in V* (i.e. where B = 0). 
Also C Y ,  is the gradient of a harmonic function O =  ana,, = Axph. 

We may connect the invariant xPh with the so-called non-integrable phase factor 
by Wu and Yang (1975a, b)  which contains all gauge-invariant information in gauge 
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theories (Jackiw 1980) if we note that a magnetic flux 

@ = fc- ( A ,  d l )  = fc (a, d l )  (4.4) 

is gauge invariant (the phase of the Wu-Yang factor). (The gauge function w in (3.4) 
should be I-valued in order for f (Vw, d l )  = 0.) Since V* is a multiconnected region, 
a magnetic flux through a contour C uncontracted into a point in V* is not equal to 
zero; hence 

X P h ( X )  = f ( x ) @  (4.5) 
where f is a harmonic function in V* determined from the solution of the external 
Neumann problem (V,yph is defined at the boundary a V by the condition of smoothness 
(see the text after (4 .2) ) .  

Obviously, xPh  is a multivalued function in V* since the circulation of its gradient 
does not vanish. Note that a ,  = an,yph # 0 just because of this. One cannot eliminate 
from A the gradient of a multivalued function by a gauge transformation with a 1-valued 
w in (3.4).  So this transversal-longitudinal part of the vector potential is its physical 
degree of freedom. Also, we conclude that there exists a gauge-invariant field a,  = d , x p h  
distributed near regions occupied by a magnetic field. A magnetic flux is its source in 
the same way charges and  currents are sources for electric and  magnetic fields, 
respectively. 

It is easy to check that a classical particle does not feel xph. Indeed, substituting 
a,  = d,,,yph in (2.6) (the electromagnetic field Hamiltonian should be omitted since an  
a electromagnetic field is assumed external, i.e. non-dynamical) and finding the 
Hamiltonian equations of motion, we see that they coincide with the equations for a 
free particle. The main point here is that in classical mechanics an  influence has a 
power character but a force acting on a charged particle in the external field is the 
Lorentz force depending only on strengths E and B being zero in this case. 

Nevertheless, ,yph has a transparent physical sense in the classical theory. The 
Coulomb field of a charged particle penetrates into the region V ;  therefore, the 
electromagnetic momentum in V differs from zero (Konopinsky 1978) 

P ( r )  = lV d'x[ V r x  e B ]  
47T r-xx/ 

where r e  V*. After some simple transformations we find 

P ( r )  = eVXPh(r) .  

(4.6) 

(4.7) 
For this, one has to integrate (4.6) by parts and then to use the stationary Maxwell 
equation rot B = -ha = - J' where J -  is a transversal part of an  external current 
giving rise to a magnetic field into V and a = V,yph. Thus in the classical theory ,yPh 
gives the moment of the electromagnetic field in 'the charge and  a stationary solenoid 
system'. 

5. Quantum theory and superconductivity 

Let us consider a quantum particle moving near a region V occupied by a magnetic 
field. The Schrodinger equation has the form (3.2) where one has to omit V,,,, (one 
particle and  p = 0) and  to put a,  = d,,yph. If it is assumed that a particle wavefunction 
is 1-valued, then xPh can change the spectrum of a system (otherwise the substitution 
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$,,h = exp( i exph)p  reduces ( 3 . 2 )  to the equation for a free particle). Indeed, we take 
for example an  infinite solenoid directed along the Oz axis. Then, f ( x )  = 0 / 2 x  in 
( 4 . 4 )  where 8 is the angle of the cylindrical system of coordinate x +  ( r ,  z, 8 ) .  Further 
we write ( 3 . 2 )  for the quantum rotator (Peshkin et a! 1961, Peshkin 1981) 

where I is a moment of inertia and  L; = -id, is the operator of the angular momentum 
projection on the axis Oz. If now G p h (  8 + 2 x )  = Gph( e ) ,  i.e. it is 1-valued, Gph( e )  - 
exp(ilO), I is an integer and E , = ( l / 2 I ) ( I - e C P / 2 2 ) ) ' .  So the rotator spectrum E, 
depends on ,yPh at non-integer I - e @ / 2 x .  In  our opinion superconductivity provides 
a more simple and obvious example of these phenomena. 

The free energy of a superconductor of volume V, in the external electromagnetic 
field is given by the Ginzburg-Landau functional: 

where 4 is the complex order parameter or the wavefunction of the Cooper pair in 
the BCS model, m is the electron mass and  e is its charge. Our further analysis will 
be qualitative. We shall not solve the Ginzburg-Landau equation exactly. However, 
for our purposes it will be quite enough (note also that we neglected the depth of 
penetration of the field B into the superconductor). A matter of principle for us is 
the following: can the field xPh have a possibility to influence a real physical system 
or not? In  other words, is there a method of elucidating whether the magnetic field 
exists inside the solenoid without any manipulations with the solenoid itself? 

When external fields are stationary, the state of the superconductor is specified by 
the minimum of its free energy. If the fields are absent, then the absolute minimum 
is reached at 4 = Go = constant, when the kinetic energy assumes zero values, and  

= a / b .  Usually, 4,) is normalised as I(Loi = n , / 2  where n, is a number of paired 
electrons per unit volume (in general, 

Consider a ring made of a superconducting material and put on the solenoid. I f  
the ring temperature is T > T,, where T, is the critical temperature, the current in the 
ring dies down. Let us stabilise the magnetic flux for T >  T,. Then, upon cooling the 
ring to T <  T, it  transforms into a superconducting state. Now we shall find the 
wavefunction of the ground state of a superconductor in this case. 

The free energy F, is invariant under gauge transformations ( 3 . 4 )  (where e + 2 e ) .  
Using substitution ( 3 . 5 )  ( a  = 1, e -+ 2 e ) ,  we rewrite F, within gauge-invariant quantities 
cy and (Lph (the function hph is interpreted as above, i.e. it describes the Cooper pair 
with its Coulomb field), and  then we pass to cylindrical coordinates in the kinetic 
energy operator. Since cy = V,yph = e , @ / 2 x r ,  e, is a basis vector of the cylindrical 
coordinate system, we may assume that the minimum is reached on the function Gph 
independent both of z and r, i.e. instead of the kinetic term in ( 5 . 2 )  we can write 
(4mr2)- '4zh(-ide -@/@)0)2$ph where CP = x / e  is the magnetic flux quantum (fluxon). 
So the only difference of F,, as compared with the case xPh = 0, consists in the charge 
of the rotation energy of the condensate, but it is quite similar to (5.1). Therefore, we 
conclude that 

is the density of Cooper pairs). 
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gives the minimum of F, (if, certainly, lClph is assumed 1-valued). Here, I,, is the integer 
to be chosen from the condition of minimal F,;  [@/@<J]  means rounding a/@() to the 
nearest integer. 

Let us now calculate the density of a superconducting current: 

J ,  = [ $:,,( -iV - 2m 

for the state (5.3).  We find 

. 2  e a  ) (Irph + hc] (5.4) 

where r,] is the ring radius. Note that for a multivalued bPh = exp[i(@/@)O], J ,  = 0. It 
follows from (5.5) that J ,  can have different directions independent of lo.  If @ =  
N@(,+@(], where N is an  integer, the system turns out to be in the state with unsteady 
equilibrium as F, is identical for both the cases I,, = N and I , ,  = N + 1. After ‘throwing 
down’ the system into the minimum the current J ,  becomes maximum in an absolute 
value. 

The appearance of the current in the situation described above can be explained 
in a sufficiently simple way. The magnetic flux passing through the superconducting 
ring should be quantised, i.e. i t  should be divisible by @,). Thereby, after a passage 
of the ring into a superconducting state, the current arises in it, the magnetic field of 
which supplements the total magnetic flux through the ring to an  integer number of 
quanta. Although (5 .5)  may only serve as the first approach to the solution of the 
Ginzburg-Landau equation, nevertheless, it gives a correct qualitative picture of the 
phenomenon. But for quantitative estimates of the current I ,  the known formula 
I, = ( @ , ~ l l l  - @ ) / L ,  where L is the contour inductance, can always be used. This formula 
is exact for superconductors (Fock 1932). We would like to add the following question 
to the reasonings used: which real physical field makes the Cooper pairs move, thus 
creating a current? We have seen that the existence of the gauge-invariant physical 
field ,yPh permits us to give the explanation of this phenomenon in the framework of 
the field theoretical interpretation of interacting matter. The current is just the direct 
consequence of the local interaction of the field ,yPh with charged Cooper pairs. From 
this point of view, we can also interpret the Aharonov-Bohm effect as the result of 
the scattering of a charged particle by the field ,yph. 

In conclusion we note that the behaviour of a superconductor in the field of a 
solenoid was considered by Liang and Ding (1988) (see also the discussion about their 
paper (Tonomura and Fukuhora 1989, Liang and Ding 1989)). 

6. Conclusion 

As a matter of fact, the field xPh can produce a mechanical influence. Consider two 
simple examples. Let the frame made of a suitable material be hung in a vertical plane 
and  the toroidal solenoid be run through the frame (the toroidal solenoid can be taken 
to exclude the return magentic flux). Moreover, let the external, constant, homogeneous 
magnetic field B,, be run through the frame. Put the frame so that the flux of Bo through 
it would be quantised. Then, after cooling this frame to T < T,,  it begins to oscillate 
if the flux inside the solenoid is not quantised. The frequency of small oscillation 
w = ( I , Q e x , / I ) ” ’  is the superconducting current in the frame, QCxt is the flux of B, 
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through it and  I is its inertial moment with respect to the hanging axis (oscillation of 
the frame with a current in the external magnetic fleld). Also, the turning scales can 
be used for observing mechanical recoil in the superconducting ring when a supercon- 
ducting current appears after cooling. When the Cooper pairs begin to move coherently, 
the atomic frame of the ring gets a recoil in accordance with the conservation of angular 
momentum. So oscillations of the turning scales will arise, the amplitude of which 
will be 2.?rl,m,/weM; M ,  U ,  me are the ring mass, the natural frequency of the turning 
scales, and the electron mass, respectively. 

The literature devoted to the Aharonov-Bohm effect interpretation, as we have 
noted above, is very large. One has to recognise that the main direction there is the 
aspiration to give a gauge-invariant formulation of this phenomenon. However, it is 
usually done by using the ‘string’ formulation of electrodynamics (by path-dependent 
integral) ( D e  Witt 1962, Mandelstam 1962). The direct application of this technique 
to the Aharonov-Bohm effect was given, for example, in Sheikh (1984), Kazes et a2 
(1983), and  Lee et a1 (1983). Also, Lee and his co-authors even suggested modifying 
the Lagrangian of interaction of a charged particle with an electromagnetic field by 
the change A + A ‘ =  A -V jc (A,  d l )  with the purpose of making it explicitly gauge 
invariant (but at the cost of its locality). Note, however, that although A ’  is gauge- 
invariant, its value depends completely on the contour C being, in general, arbitrary. 
So it has no clear physical sense. 

Our interpretation is based on the gauge-invariant formulation of electrodynamics 
as the field theory (Prokhorov 1982, 1988, Faddeev and Jackiw 1988) when all gauge- 
invariant physical degrees of freedom are determined from the analysis of constraints. 
This approach, as has been shown above, permits one to give to all gauge-invariant 
variables, used in the theory, a transparent physical sense that, in our opinion, is the 
main benefit of our formulation. 
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